
Typechecking BPL

Your type checker needs to make two passes through your parse
tree:

A. A top-down pass that links every symbol (variable or
function) usage to its declaration.

B. A bottom-up pass that assigns a type to every expression
(remember that expressions represent values, so they have
types) and checks that the program is type-correct. One
important part of this is ensuring that function calls have
the correct number and types of arguments.

A program that successfully passes through your scanner, parser
and type checker should be a correct, valid program that you can
generate code for. If you aren't signaling errors by throwing
exceptions you should give some kind of signal that there is an
error in the program so you don't try to generate code for it.

Debugging Info
We verified the correctness of your parser by printing out the
parse tree returned by your parser. There is no single object
returned by the type checker -- it just modifies the parse tree.
You should include a variable DEBUG in your type checker that,
when set to True, causes two kinds of information to be printed:

• When a symbol usage is linked to a declaration in the first
phase you should print something like
"Symbol X on line 23 is linked to declaration on line 5."
The line numbers for both the symbols nodes and the
declaration nodes should both be in your parse tree (if
they aren't, add them).

• Each time you assign a type to an expression print
something about it.

The second of these print statements can be handled in many
different ways, some more verbose than others. For example, if
line 12 of your program is the line y = x+1 you might print
 Variable y on line 12 assigned type integer
 Variable x on line 12 assigned type integer
 Integer constant on line 12 assigned type integer
 + expression on line 12 assigned type integer
 Assignment on line 12 assigned type integer

Some of these items might be omitted; the variables and
constants might not need to have their types printed. But some
information of some sort coming out of the type checking stages,
combined with correct error reporting on bad programs, will help
you have confidence that your type checker is finding all of the
information it needs. It is easy to read around excess print
statements.

Be sure that you have a way to turn off the printing of this
debugging information. You don't want all of these print
statements coming out when you are in the code generation
phase.

Types in BPL

BPL by design has a very simple type system. The only possible
types are int, string, void (as a return-type for functions), pointer
to int, pointer to string, array of int, array of string.

For more general type systems you would need to do a lot more,
but I wanted to focus on other things in the compiler project (like
getting it done). With these simple options you can represent
types with strings. I have a "type" field in every exp node, that
my type checker fills in. This field is just a string: "int", "string",
"void", "int array", "string array", "pointer to int" and "pointer to
string". In general, something is type correct if its type field is
what I expect it to be.

Symbol Tables

As I said earlier, I do two passes: a top-down one for resolving
symbols and a bottom-up one for checking types. You could
combine these into one -- resolve references in a function
declaration, then on the way back up check types. I find it easier to
keep the two passes separate.

To resolve references you need to maintain a table of all current
symbols. There are three places in the code where you could
change the active environment:

• top-level declarations (these are usually functions but could
be arrays or variables)

• parameters in function declarations. These are visible in the
body of their function, nowhere else.

• local declarations at the start of a compound statement.
These are visible only in the body of their compound
statement.

For the symbol table you need to be able to look up a the name of
an object and find its declaration, so implicitly the table is indexed
by strings and the table entries are declaration nodes. There are
lots of ways to arrange this. I do different things in the two basic
levels: top-level declarations I put in a hash map of type (I do this in
Java) HashMap<String, DecNode>. Declarations that are local to a
function or compound statement I do with a linked list of DecNodes.
It is easy to add onto the front of a linked list in such a way that I
preserve a pointer to where I started. When I reach a compound
statement and variable localDecs is a pointer to my current list of
local declarations, I add the new declarations onto localDecs, find
references in the body of the compound statement with the
extended list of declarations, then find references in the next
statement, if there is one, with the original localDecs. When I am
trying to resolve a symbol I first look in the local declarations, then if
those don't resolve the symbol look in the hashmap of global
declarations.

There are lots of alternatives to what I do. One would be to use a
hashmap for everything. This requires you to have a naming
convention for multiple uses of the same name (you might have a
global function f and a local variable f). Alternatively, you could use
a linked list for everything. Commercial compiler-writers worry a
lot about lookup times in a symbol table of a large program, but
you don't need to consider this; anyone who writes large programs
in BPL deserves what they get. Do be sure that you handle the
scoping correctly. The compound statement on the left below is
incorrect and should give an error; the one on the right is correct
and should print 2.

{
 { int x;
 x = 1;
 }
 write (x);
}

{ int x;
 x = 1;
 { string x;
 x = "bob";
 }
 write(x+1);
}

The top-down pass: FindReferences(tree)
The creates the top-level symbol table. Since a program in
BPL consists of a sequence of declarations, this walks
through those declarations, extending the symbol table for
each. What it does for a declaration depends on the type
of declaration:

a) For variable declarations and array declarations, it just

adds the declared variable to the symbol table.
b) For function declarations there is much more to do. I

create a list of local declarations, which starts with the
parameters of the function. I find it helps to make a
new list structure for the local declations; each item has
just a declaration and a next field. If you are careful
you could probably avoid this. I then call a function
that finds all of the references for a statement, giving it
the global symbol table, the list of local declarations,
and the function body, which is a statement.

FindReferencesStatement(s, symbolTable, localDecs) looks at the
kind of statement node S is. If it is a while-statement we call
FindReferencesExpression on the condition, and
FindReferencesStatement on the body. If it is an if-statement we
call FindReferencesExpression on the condition and then
findReferencesStatement on each of the branches. And so forth.
None of the statement types are difficult.

FindReferencesExpression has a little more to do. For one thing, if
we get to a variable or array reference, we need to actually resolve
it. We first look up the name in the local declarations, and if we
don't find it there in the global symbol table. If it isn't found we
give an undeclared variable error message (I throw an exception
and halt; you can do what you want). If we do find it we set up a
link from the symbol to its declaration. All of my variable and array
nodes have a field called declaration, which is just a declaration
node. We set this to the value bound to the name in the symbol
table.

The other expression node that makes us work is a function call.
The function itself should be found in the symbol table. Once we set
up the link from the function to its declaration, we also need to call
FindReferencesExpression on each of the arguments to the call. For
example, we might have call
 z = f(x+1, x+y).
Both of the arguments have symbol uses that need to be resolved.

The bottom-up pass: TypeCheck

For this pass we do a simple leaf-first traversal of the tree (TypeCheck
the children, use their types to TypeCheck the root). At the top
level we walk along the list of declarations that make up the
program. For variable and array declarations there is nothing to type
check. For function declarations we call TypeCheckStatement on the
body of the function.

For most of the statement types, TypeCheckStatement is easy. For
example, to typecheck a While-statement we call
TypeCheckExpression on the condition. This should result in a type
being assigned to the condion node. Back in TypeCheckStatement,
we check that this type is "int" (remember that BPL doesn't have a
boolean type). If the type is not "int" we throw an error; it is is we
call TypeCheckStatement on the two branches.

Type checking a return statement is more difficult. Our functions
could return an int or a string. If the return type of a function is
"int" we should check that it does have a return statement and
that this statement returns a value of type int.

This is the one place that your type checker needs non-local
information -- whether the return statement is type correct
depends on the function this statement belongs to. I give
TypeCheckStatement a parameter that has the return type of the
current function whose body is being type checked. That means
it is easy to check that the type of the value being returned is
correct.

However, I cheat a bit by not going the extra step of ensuring that
the function contains a return statement. We really sure check
that in all branches of the function there is a return statement,
and this requires more run-time analysis than we have time to do.
So I would find the following program type-correct:
 int f(int x) {
 write(x);
 }
 void main(void) {
 f(5);
 }
That doesn't seem like a big problem. However, if we changed the
body of main to
 write(f(5));
I would call it type-correct and it runs into trouble because f never
returns anything. So let the programmer beware.

TypeCheckExpression should assign a type to the expression node.
For most of the expressions this is easy. Int nodes have type "int".
Read nodes also have type "int". String values have type "string".
A binary operator has two children that are expressions, so we
recursively check their types. All of the operators require these
two children to have the same type; arithmetic operators require
their types to both be "int". Throw an error if any of these
conditions aren't met. If they are met assign the obvious type to
the parent node.

Unary operators & and * have an extra step but aren't difficult to
handle. Array element references such as A[i+1] are also fairly
simple. A must resolve to an array of some base type ("int" or
"string"), the index expression must be an "int". If these are
satisfied then A[i+1] has the base type of the array.

Function calls are a bit more work. If we have a call such as f(x+1, y)
we need to type check each argument, then walk along the
parameter list of the declaration of f. The argument list must have
the same length as the parameter list and each argument must have
the same type as the corresponding parameter. If all of this is
satisfied, the type of the call node is the return type of the function.

The other expression that requires care is the assignment
expression. It isn't enough for both sides of the assignment to have
the same type -- you don't want to accept an expressin 1=0. For
an assignment statement to be type-correct, the left side must be
an "L-value", i.e., something we can assign to. For BPL the only
legitimate L-values are

• variables: x = 5 is type correct if x is a variable of type "int".
• array subscripts: A[i] = 0 is correct if A has base-type "int".
• pointer dereferences: *x = 23 is correct if x has type

"pointer to int".

I have a little function IsLValue(node) that says if a given tree node
satisfies one of these conditions. I call this on the left child of any
assignment node and throw an error if it returns False.

