
Typechecking BPL 



Your type checker needs to make two passes through your parse 
tree: 
 

A. A top-down pass that links every symbol (variable or 
function) usage to its declaration. 

B. A bottom-up pass that assigns a type to every expression 
(remember that expressions represent values, so they have 
types) and checks that the program is type-correct.  One 
important part of this is ensuring that function calls have 
the correct number and types of arguments. 
 



A program that successfully passes through your scanner, parser 
and type checker should be a correct, valid program that you can 
generate code for.   If you aren't signaling errors by throwing 
exceptions you should give some kind of signal that there is an 
error in the program so you don't try to generate code for it. 
 



Debugging Info 
We verified the correctness of your parser by printing out the 
parse tree returned by your parser.  There is no single object 
returned by the type checker -- it just modifies the parse tree.   
You should include a variable DEBUG in your type checker that, 
when set to True, causes two kinds of information to be printed: 
 

• When a symbol usage is linked to a declaration in the first 
phase you should print something like 
"Symbol X on line 23 is linked to declaration on line 5." 
The line numbers for both the symbols nodes and the 
declaration nodes should both be in your parse tree (if 
they aren't, add them).  

• Each time you assign a type to an expression print 
something about it. 



The second of these print statements  can be  handled in many 
different ways, some more verbose than others.  For example, if 
line 12 of your program is the line  y = x+1 you might print 
 Variable y on line 12 assigned type integer 
 Variable x on line 12 assigned type integer 
 Integer constant on line 12 assigned type integer 
 + expression on line 12 assigned type integer 
 Assignment on line 12 assigned type integer 
 
Some of these items might be omitted; the variables and 
constants might not need to have their types printed.  But some 
information of some sort coming out of the type checking stages, 
combined with correct error reporting on bad programs, will help 
you have confidence that your type checker is finding all of the 
information it needs.  It is easy to read around excess print 
statements. 



Be sure that you have a way to turn off the printing of this 
debugging information.  You don't want all of these print 
statements coming out when you are in the code generation 
phase. 
 
 



Types in BPL 
 
BPL by design has a very simple type system.  The only possible 
types are int, string, void (as a return-type for functions), pointer 
to int, pointer to string, array of int, array of string.   
 
For more general type systems you would need to do a lot more, 
but I wanted to focus on other things in the compiler project (like 
getting it done). With these simple options you can represent 
types with strings.  I have a "type" field in every exp node, that 
my type checker fills in.  This field is just a string: "int", "string",  
"void", "int array", "string array", "pointer to int" and "pointer to 
string".  In general, something is type correct if its type field is 
what I expect it to be.  



Symbol Tables 
 

As I said earlier, I do two passes: a top-down one for resolving 
symbols and a bottom-up one for checking types.  You could 
combine these into one -- resolve references in a function 
declaration, then on the way back up check types.  I find it easier to 
keep the two passes separate.  
 
To resolve references you need to maintain a table of all current 
symbols.  There are three places in the code where you could 
change the active environment: 

• top-level declarations (these are usually functions but could 
be arrays or variables) 

• parameters in function declarations.  These are visible in the 
body of their function, nowhere else. 

• local declarations at the start of a compound statement.  
These are visible only in the body of their compound 
statement. 

 
 



For the symbol table you need to be able to look up a the name of 
an object and find its declaration, so implicitly the table is indexed 
by strings and the table entries are declaration nodes.  There are 
lots of ways to arrange this.  I do different things in the two basic 
levels:  top-level declarations I put in a hash map of type (I do this in 
Java) HashMap<String, DecNode>.  Declarations that are local to a 
function or compound statement I do with a linked list of DecNodes.  
It is easy to add onto the front of a linked list in such a way that I 
preserve a pointer to where I started.  When I reach a compound 
statement and variable localDecs is a pointer to my current list of 
local declarations, I add the new declarations onto localDecs, find 
references in the body of the compound statement with the 
extended list of declarations, then find references in the next 
statement, if there is one, with the original localDecs.  When I am 
trying to resolve a symbol I first look in the local declarations, then if 
those don't resolve the symbol look in the hashmap of global 
declarations. 
 
 
 
 



There are lots of alternatives to what I do.  One would be to use a 
hashmap for everything.  This requires you to have a naming 
convention for multiple uses of the same name (you might have a 
global function f and a local variable f).  Alternatively, you could use 
a linked list for everything.   Commercial compiler-writers worry a 
lot about lookup times in a symbol table of a large program, but 
you don't need to consider this; anyone who writes large programs 
in BPL deserves what they get.  Do be sure that you handle the 
scoping correctly.  The compound statement on the left below is 
incorrect and should give an error; the one on the right is correct 
and should print 2. 

{  
    { int x; 
       x = 1; 
    } 
    write (x); 
} 

{ int x; 
   x = 1; 
   { string x; 
       x = "bob"; 
    } 
     write(x+1); 
}  



The top-down pass: FindReferences(tree) 
The creates the top-level symbol table.  Since a program in 
BPL consists of a sequence of declarations, this walks 
through those declarations, extending the symbol table for 
each.  What it does for a declaration depends on the type 
of declaration: 
 
a) For variable declarations and array declarations, it just 

adds the declared variable to the symbol table.  
b) For function declarations there is much more to do.  I 

create a list of local declarations, which starts with the 
parameters of the function.  I find it helps to make a 
new list structure for the local declations; each item has 
just a declaration and a next field.  If you are careful 
you could probably avoid this.  I then call a function 
that finds all of the references for a statement, giving it 
the global symbol table, the list of local declarations, 
and the function body, which is a statement. 



FindReferencesStatement(s, symbolTable, localDecs) looks at the 
kind of statement node S is.  If it is a while-statement we call 
FindReferencesExpression on the condition,  and 
FindReferencesStatement on the body.  If it is an if-statement we 
call FindReferencesExpression on the condition and then 
findReferencesStatement on each of the branches.  And so forth.  
None of the statement types are difficult. 



FindReferencesExpression has a little more to do.  For one thing, if 
we get to a variable or array reference, we need to actually resolve 
it.  We first look up the name  in the local declarations, and if we 
don't find it there in the global symbol table.  If it isn't found we 
give an undeclared variable error message  (I throw an exception 
and halt; you can do what you want).  If we do find it we set up a 
link from the symbol to its declaration.  All of my variable and array 
nodes have a field called declaration, which is just a declaration 
node.  We set this to the value bound to the name in the symbol 
table. 



The other expression node that makes us work is a function call.  
The function itself should be found in the symbol table. Once we set 
up the link from the function to its declaration, we also need to call 
FindReferencesExpression on each of the arguments to the call.  For 
example, we might have call 
  z = f(x+1, x+y). 
Both of the arguments have symbol uses that need to be resolved. 



The bottom-up pass: TypeCheck 
 
For this pass we do a simple leaf-first traversal of the tree (TypeCheck 
the children, use their types to TypeCheck the root).    At the top 
level we walk along the list of declarations that make up the 
program.  For variable and array declarations there is nothing to type 
check.  For function declarations we call TypeCheckStatement on the 
body of the function. 



For most of the statement types, TypeCheckStatement is easy.  For 
example, to typecheck a While-statement we call 
TypeCheckExpression on the condition.  This should result in a type 
being assigned to the condion node.  Back in TypeCheckStatement, 
we check that this type is "int" (remember that BPL doesn't have a 
boolean type).  If the type is not "int" we throw an error; it is is we 
call TypeCheckStatement on the two branches. 



Type checking a return statement is more difficult.  Our functions 
could return an int or a string.  If the return type of a function is 
"int" we should check that it does have a return statement and 
that this statement returns a value of type int. 
 
This is the one place that your type checker needs non-local 
information -- whether the return statement is type correct 
depends on the function this statement belongs to.  I give 
TypeCheckStatement a parameter that has the return type of the 
current function whose body is being type checked.  That means 
it is easy to check that the type of the value being returned is 
correct. 



However, I cheat a bit by not going the extra step of ensuring that 
the function contains a return statement.  We really sure check 
that in all branches of the function there is a return statement, 
and this requires more run-time analysis than we have time to do.  
So I would find the following program type-correct: 
 int f(int x) { 
  write(x); 
 } 
 void main(void) { 
  f(5); 
 } 
That doesn't seem like a big problem.  However, if we changed the 
body of main to 
  write( f(5)); 
I would call it type-correct and it runs into trouble because f never 
returns anything.    So let the programmer beware. 
 



TypeCheckExpression should assign a type to the expression node.  
For most of the expressions this is easy.   Int nodes have type "int".  
Read nodes also have type "int".  String values have type "string".    
A binary operator has two children that are expressions, so we 
recursively check their types.  All of the operators require these 
two children to have the same type; arithmetic operators require 
their types to both be "int".  Throw an error if any of these 
conditions aren't met.   If they are met assign the obvious type to 
the parent node. 
 



Unary operators  & and * have an extra step but aren't difficult to 
handle.   Array element references such as A[i+1] are also fairly 
simple.  A must resolve to an array of some base type ("int" or 
"string"), the index expression must  be an "int".  If these are 
satisfied then A[i+1] has the base type of the array. 
 



Function calls are a bit more work.  If we have a call such as f(x+1, y)  
we need to type check each argument, then walk along the 
parameter list of the declaration of f.  The argument list must have 
the same length as the parameter list and each argument must have 
the same type as the corresponding parameter.  If all of this is 
satisfied, the type of the call node is the return type of the function. 



The other expression that requires care is the assignment 
expression.  It isn't enough for both sides of the assignment to have 
the same type -- you don't want to accept an expressin  1=0.  For 
an assignment statement to be type-correct, the left side must be 
an "L-value", i.e., something we can assign to.  For BPL the only 
legitimate L-values are 

• variables:  x = 5 is type correct if x is a variable of type "int". 
• array subscripts:  A[i] = 0  is correct if A has base-type "int". 
• pointer dereferences:   *x = 23 is correct if x has type 

"pointer to int". 
 

I have a little function IsLValue(node) that says if a given tree node 
satisfies one of these conditions.  I call this on the left child of any 
assignment node and throw an error if it returns False. 


